Received: November 19, 1982; accepted: January 21, 1983

SYNTHESIS OF PERFLUOROBICYCLIC ETHERS [1]. THE ELECTROCHEMICAL FLUORINATION OF CYCLOALKYL-SUBSTITUTED CARBOXYLIC ACIDS*

TAKASHI ABE, HAJIME BABA, EIJI HAYASHI and SHUNJI NAGASE

Government Industrial Research Institute, Nagoya Hirate-machi, Kita-ku, Nagoya (Japan)

SUMMARY

A new synthetic method for making perfluorobicyclic and perfluoromonospiro ethers by fluorinating the cycloalkyl-substituted carboxylic acid electrochemically is presented. Novel perfluoro(2-oxabicyclo[3.3.0]octane) and perfluoro(7-oxabicyclo-[4.3.0]nonane) were obtained by the fluorination of methyl cyclopentylacetate and methyl cyclohexylacetate in yields of 10.5% and 11.8% respectively. The fluorination of methyl 3-cyclopentylpropionate and methyl 3-cyclohexylpropionate afforded the new perfluoro(1-oxaspiro[4.4]nonane) and perfluoro(1-oxaspiro[4.5]decane) as the main cyclization products in yields of 12.4% and 16.6% respectively. Several kinds of perfluorinated cyclization products having a perfluoroalkyl group at the β -carbon to oxygen were also prepared by the fluorination of α -alkyl- α -cycloalkylsubstituted acetic acids. These new fluorination products, including some perfluorocycloalkanes and perfluoroalkanoyl fluorides, have been characterized by elemental analysis and infrared, mass and ¹⁹F nmr spectra.

0022-1139/83/\$3.00

© Elsevier Sequoia/Printed in The Netherlands

 ^{* &#}x27;Studies on the cyclization upon Electrochemical Fluorination', Part IV. Some results have been quoted by two of the authors (T. Abe and S. Nagase) in the monograph.

INTRODUCTION

A number of papers have reported the preparation of perfluoromonocyclic ethers by several fluorination procedures [1]. Concerning the perfluorobicyclic and perfluoromonospiro ethers except those with a fused oxirane ring, only one example, <u>i.e.</u> 1,4-bis(trifluoromethyl)-2,6,7-trioxaperfluorobicyclo[2.2.2]octane, has been known previous to the start of this investigation. It was synthesized by the fluorination of l-trifluoromethyl-4-methyl-2,6,7-trioxabicyclo[2.2.2]octane with elementary fluorine [2].

However, during the course of this investigation, Tatlow and his co-workers reported the fluorination of benzofuran with cesium tetrafluorocobaltate (III), which yielded a number of partially fluorinated products together with the perfluoro(7-oxabicyclo[4.3.0]nonane) [3].

In a previous paper, we have demonstrated the fluorination of α -alkyl-substituted carboxylic acids as a synthetic approach toward the new perfluoro(2,4-dialkyloxolane)s which is based on the utility of cyclization of carboxylic acids during electrochemical fluorination [1], <u>viz</u>.

 $R=CH_3$, $R'=n-C_3H_7$; $R=CH_3$, $R'=n-C_4H_9$; $R=R'=n-C_3H_7$, etc. Therefore, we extended next the fluorination of carboxylic acids to that of the cycloalkyl-substituted ones in order to obtain new perfluorinated fused ring compounds having the ether linkage.

In this paper, we wish to report a new method for the preparation of perfluorobicyclic and perfluoromonospiro ethers by the fluorination of cycloalkyl-substituted carboxylic acids, which possesses significant features in comparison with other method; the starting materials are readily accessible and the procedures are simple.

It was found that new perfluorobicyclic and perfluoromonospiro ethers were obtained successfully from fluorinations of cycloalkyl-substituted carboxylic acid esters in fair yields according to the following general equations.

Scheme 1

The carboxylic acid esters dealt with in this paper were the following seven compounds; methyl cyclopentyl acetate (<u>1</u>), methyl cyclohexylacetate (<u>2</u>), methyl 3-cyclopentylpropionate (<u>3</u>), methyl 3-cyclohexylpropionate (<u>4</u>), methyl 2-cyclopentylpropionate (<u>5</u>), methyl 2-cyclopentyl-n-butyrate (<u>6</u>) and methyl 3-cyclohexyl-2-methylpropionate (<u>7</u>).

RESULTS AND DISCUSSION

All carboxylic acids used were fluorinated in the form of methyl esters, for which reactions proceeded moderately with a relatively lower and constant electrolytic voltage, compared with the cases when the corresponding carboxylic acid chlorides were fluorinated.

New cyclization products consisting of two five-membered, and five- and six-membered fused ring systems were obtained successfully by the fluorination of cycloalkyl-substituted acetic and propionic acids in fairly good yields. It was found that the type of product formed depended on the chain length of the starting cycloalkyl-substituted carboxylic ester, that is, whether acetic or propionic ones were used.

Thus, perfluoro(2-oxabicyclo[3.3.0]octane)($\underline{8a}$) and perfluoro(7-oxabicyclo[4.3.0]nonane)($\underline{9}$) were obtained from the fluorination of $\underline{1}$ and $\underline{2}$ in yields of 10.5% and 11.8% respectively.

On the other hand, the fluorination of $\underline{3}$ and $\underline{4}$ resulted in the formation of perfluoro(1-oxaspiro[4.4]nonane)($\underline{10}$) and perfluoro(1-oxaspiro[4.5]decane)($\underline{11a}$) as the main cyclization product in yields of 12.8% and 16.6% respectively, though the formation of perfluoro(2-oxabicyclo[4.3.0]nonane)($\underline{12}$) from the former and perfluoro(2-oxabicyclo[4.4.0]decane)($\underline{13}$) from the latter was most expected analogously to the fluorinations of $\underline{1}$ and $\underline{2}$. However, only a small quantities of $\underline{12}$ was obtained from $\underline{3}$, but not $\underline{13}$ from $\underline{4}$ at all. The predominant formation of the less strained system.

The introduction of an another alkyl group (CH₃- or C₂H₅group) to the α -carbon of the starting cycloalkyl-substituted carboxylic acids which should be fluorinated afforded the perfluorobicyclic and perfluoromonospiro ethers having a CF₃- or C₂F₅- group at the β -carbon to oxygen. Thus, from 5, 6 and 7, perfluoro(4-methyl-2-oxabicyclo[3.3.0]octane) (<u>8b</u>), perfluoro-(4-ethyl-2-oxabicyclo[3.3.0]octane) (<u>8c</u>) and perfluoro(3-methyl-1-oxaspiro[4.5]decane) (<u>11b</u>) were obtained respectively in yields of 18.8%, 14.7% and 13.8%. From <u>6</u>, in addition to the expected <u>8c</u>, an another kind of cyclization product, perfluoro(3-cyclopentyloxolane) (<u>14</u>), was produced similar to the fluorination of methyl 2-ethyl-n-valerate and 2-ethyl-n-caproyl chloride [1].

Scheme 2

As far as the preparation of perfluoro(7-oxabicyclo[4.3.0]nonane)($\underline{9}$) is concerned, 2-cyclohexylethanol and cyclohexen-2-yl acetic acids (methyl ester and acid chloride) could substitute for $\underline{2}$ as the starting material. But, several attempted fluorinations of such compounds as phenylacetyl chloride, 2-phenylethanol, methyl phenylacetate, and benzofuran failed to give $\underline{9}$ because of the serious formation of either a tarry material (from the first three compounds) or a solid material.

126

Invariably the fluorination of these cycloalkyl-substituted carboxylic esters was accompanied by the formation of perfluorocycloalkanes as the major degradation by-products, which could be removed easily by the fractional distillation from the desired cyclization products. Typical is the case of the fluorination of 2, which afforded the following three kinds of perfluorocycloalkanes and a perfluoroalkane as the cleaved products [Arranged in order of the elution time in the gas chromatogram. See the experimental section].

$$\underline{2} \longrightarrow \underbrace{\overset{CF_3}{F}}_{F} CF_3 (\underline{15}), n-C_7F_{16} (\underline{16}), \underbrace{\overset{C_2F_5}{F}}_{F} (\underline{17}), \underbrace{\overset{CF_3}{F}}_{F} (\underline{18})$$

Scheme 3

The formation of perfluoromonospiro compounds (<u>10</u>, <u>11a</u> and <u>11b</u>) from 3-cycloalkyl-substituted propionic acids (<u>3,4</u> and <u>7</u>) was rather unexpected, because there are four available C-H bond in both the cyclopentyl and cyclohexyl groups in the molecule to create a carbon radical by hydrogen abstraction by fluorine, which would contribute to the formation of 5-6 and 6-6 fused ring compounds respectively by intramolecular cyclization.

A careful inspection using models shows also that the formation of the expected bicyclic structure having a fused oxane ring is not difficult. However, the relatively stable tertiary carbon radical on the cycloalkane ring and the significant steric factors which govern the easier formation of oxolane ring might favor this cyclization. For example,

 $\rightarrow \bigcup_{OCH_3}$

As demonstrated in a previous paper, with respect to the geminal fluorines at α -carbon to oxygen, most of the ¹⁹F nmr spectra of the perfluoroalkyl-substituted oxolanes and oxanes exhibited characteristically an AB pattern at $\phi72 \sim 85$ and $\phi83 \sim$ 93 ppm with J=158~178 Hz and at ϕ 72~85 and ϕ 73~93 ppm with J=130~150 Hz respectively [4]. The magnitude of the coupling constants provided useful means for differentiating between them. Likewise. ¹⁹F nmr spectra of these perfluorobicyclic ethers, in most instances, exhibited direct evidence for the configuration of the newly-formed fused ring, that is, either a fused oxane or a fused oxolane ring. For example, the $^{19}{
m F}$ nmr spectrum of geminal fluorines at α -carbon to oxygen of <u>8</u>a exhibited a typical AB pattern [ϕ 80.9 and ϕ 88.1 ppm, J=130 Hz] which was assignable to that of the oxolane ring. On the other hand, ¹⁹F nmr spectrum of <u>12</u> showed an AB pattern at ϕ 78.6 and ϕ 90.8 ppm with J=158 Hz similarly to that expected for the substituted perfluorooxane ring. However, final structural determination of these perfluorobicyclic ethers including perfluoromonospiro ethers was accomplished by investigating the chlorination product which was formed by treating them with anhydrous aluminum chloride at ca. 165 °C. These results will be published later.

Among the minor cyclization by-products isolated, the most significant ones may be the β -trifluoromethoxy-substituted ones like perfluoro(3-methoxy-2-oxabicyclo[3.3.0]octane)(<u>19</u>) obtained from <u>1</u>, perfluoro(6-methoxy-7-oxabicyclo[4.3.0]nonane)(<u>20</u>) obtained from <u>2</u>, perfluoro(2-methoxy-1-oxaspiro[4.4]octane)(<u>21</u>) obtained from <u>3</u>, because these products suggest the mode of cyclization of esters during fluorination, which involves a resonance stabilized intermediate radical [6]. The detailed study on the synthesis of several kinds of perfluoro(8-alkoxy-substituted 7-oxabicyclo[4.3.0]nonane)s will be published in a subsequent paper.

EXPERIMENTAL

Reagents

Cyclopentylacetic acid and 3-cyclohexylpropionic acid were purchased from Aldrich Chemicals Co., and cyclohexylacetic acid and 3-cyclohexylpropionic acid were purchased from Tokyo Kasei Co. Other carboxylic acids used were prepared by the malonic acid synthesis in an usual manner; 2-cyclopentylpropionic acid and 3-cyclohexyl-2-methylpropionic acid were prepared by the reaction of diethyl methylmalonate (Aldrich Chemicals Co.) with cyclopentyl bromide (Aldrich Chemicals Co.) and cyclohexylmethyl bromide (Tokyo Kasei Co.) respectively. The 2-cyclopentyl-nbutyric acid was prepared by the reaction of diethyl ethylmalonate (Tokyo Kasei Co.) and cyclopentyl bromide (Aldrich Chemicals Co.). All carboxylic acids were converted into methyl esters, which were purified by the fractional distillation before use. These starting materials had following boiling points: methyl cyclopentylacetate, 176.5~178.0 °C; methyl cyclohexyl acet-200.5~201.5 °C; 3-cyclopentyl-n-propionate, 200.5~202.0 ate, °C; methyl 3-cyclohexyl-n-propionate, 135~136.5 °C/58 mm Hq; methyl 2-cyclopentyl-n-propionate, 86.9~87.2 °C/22 mm Hg; methyl 2-cyclopentyl-n-butyrate, 95.5~96.8 °C/18 mm Hg; methyl 2-methyl-3-cyclohexyl-n-propionate 103~104.5 °C/19 mm Hg.

Anhydrous hydrogen fluoride (Daikin Industries Co.) was better than 99.8% pure.

Apparatus

The electrolytic fluorination apparatus and operating procedures were similar to those described previously [1].

Analytical work was carried out with a Shimadzu GC-2C gas chromatograph using stainless columns (3 mm dia) packed with 30% 1,6-bis(1,1,12-trihydroperfluorodedecyloxy)hexane on Chromosorb PAW (6.4 m)(Col. A), and 26% KelF #90 on Chromosorb PAW (3.8 m)(Col. B). For semi-preparative work, a Shimadzu GC-1C gas chromatograph was used employing stainless columns (10 mm dia) packed with 30% Silicone QF-1 on Chromosorb PAW (4.9 m) Col. C), 30% 1,6-bis(1,1,12-trihydroperfluorododecyloxy)hexane on Chromosorb PAW (4.9 m)(Col. D), and 30% Kel F wax on Chromosorb PAW (4.9 m)(Col. E). The carrier was helium in all cases.

Infrared spectra were measured on a Hitachi EPI-G3 spectrometer, using a 6 cm gas cell with KBr windows unless otherwise stated. 19 F nmr spectra were measured on a Hitachi R-20B high resolution spectrometer operating at 56.46 MHz using CCl₃F as an internal standard. Mass spectra were measured on a Hitachi RMU-7 instrument at 70 eV.

Fluorination of <u>l</u>

Sample <u>1</u> (33.5 g, 0.236 mol) was charged into the cell which contained 1*i* electrochemically purified anhydrous hydrogen fluoride, and the solution was subjected to fluorination with an anodic current density of 3.5 A/dm^2 , a cell voltage of 5.3~8.5 V, and a cell temperature of 5~6 °C over a period of 393 min (212 Ahr).

The effluent gases from the cell were passed over NaF pellets and then condensed in a trap at -78 °C. The gaseous products which did not condensed in a trap at -78 °C were then bubbled through two consecutive polyethylene bottles containing water (for the collection of perfluorocarboxylic acids which were formed as a result of the hydrolysis of perfluorocarboxylicacid fluorides), and finally collected in traps immersed in liq. nitrogen. The products condensed in cold traps and cell drainings were subsequently analysed by GLC (Col. A). All products except new ones were identified by comparison of their infrared spectra and retention times on a gas chromatogram with those of authentic samples. In the case of new compounds, they were separated from other products by use of semi-preparative GLC, and their structure was determined on the basis of their infrared, ¹⁹F nmr and mass spectra, and elemental analysis. The compounds (2.8 g) condensed at -196 °C consisted primarily of CF_4 (22), and small amounts of C_2F_6 (23) and C_3F_8 (24).

The products (Compound number, g Yield)(38.5 g) condensed at -78 °C consisted of perfluoro(methylcyclopentane)(25) (10.8), perfluorocyclohexane(26) (0.7), perfluoro(cyclopentylmethyl methylether)(27) (1.6), perfluoro(2-propyloxolane)(28) (2.7), 8a (7.1), 19 (8.5), a mixture of perfluoro(cyclopentylacetyl fluoride) (<u>29</u>) and perfluoro(cyclohexylcarbonyl fluoride) (<u>30</u>) (0.9), and unidentified (6.2). Cell drainings (6.5 g) consisted of <u>25</u> (0.3), <u>26</u> (trace), <u>27</u> (0.3), <u>28</u> (0.6), <u>8a</u> (1.0), <u>19</u> (1.4), <u>29 + 30</u> (1.1) and unidentified (2.2). The acids formed in polyethylene bottles were worked up to give sodium salts (0.8 g) and were analysed by the method described previously. They consisted of 77 mol% of sodium trifluoroacetate(<u>33</u>), 13% of sodium pentafluoropropionate(<u>34</u>), 4% of sodium perfluorobutyrate(<u>35</u>), and 6% of sodium perfluorovalerate(<u>36</u>).

The composition of <u>29</u> and <u>30</u> was determined by ¹⁹F nmr. On the basis of the relative areas of the absorption peaks due to -CF groups in the ¹⁹F nmr spectrum of the mixture of <u>29</u> and <u>30</u>, the following composition was determined; <u>29/30</u>=1 : 1.26. An attempted isolation of methyl esters of <u>29</u> and <u>30</u> (<u>31</u> and <u>32</u> respectively) from each other was unsuccessful.

The yields of <u>8a</u> and <u>19</u> were 10.5% and 10.6% based on the sample fed respectively.

 $\begin{array}{l} & \underbrace{\operatorname{Perfluoro}\left(\operatorname{cyclopentylmethyl methylether}\right)\left(\underline{27}\right)}_{D} (\operatorname{nc}\right) \ \operatorname{had} \\ & \operatorname{bp} \ 73.0 \sim 73.5 \ ^\circ \mathrm{C}, \ \operatorname{n_D}^{20} < 1.28 \ \operatorname{and} \ \operatorname{d_4}^{20} 1.7459. \ \mathrm{IR:} \ 1332 \sim 1337 \ (\mathrm{s}), \\ & 1305 \ (\mathrm{s}), \ 1287 \ (\mathrm{s}, \mathrm{sh}), \ 1262 \ (\mathrm{s}, \mathrm{sh}), \ 1247 \ (\mathrm{vs}), \ 1226 \ (\mathrm{vs}), \ 1152 \\ & (\mathrm{s}), \ 1126 \ (\mathrm{m}), \ 1053 \ (\mathrm{w}), \ 1029 \ (\mathrm{w}), \ 984 \ (\mathrm{ms}), \ 936 \ (\mathrm{w}), \ 912 \ (\mathrm{w}), \\ & 876 \ (\mathrm{w}), \ 862 \ (\mathrm{w}), \ 840 \ (\mathrm{w}), \ 806 \ (\mathrm{m}), \ 739 \ (\mathrm{w}), \ 662 \ (\mathrm{w}), \ 602 \ 617 \\ & (\mathrm{w}). \ \ \mathrm{Mass:} \ 347 \ [\mathrm{M-F]}^+ (1.4), \ 281 \ \mathrm{C_6F_{11}}^+ (6.5), \ 259 \ \mathrm{C_6F_90}^+ (2.4), \\ & 247 \ \mathrm{C_5F_90}^+ (2.0), \ 231 \ \mathrm{C_5F_9}^+ (4.7), \ 193 \ \mathrm{C_5F_7}^+ (2.3), \ 181 \ \mathrm{C_4F_7}^+ (8.2), \\ & 169 \ \mathrm{C_3F_7}^+ (3.7), \ 150 \ \mathrm{C_3F_6}^+ (2.6), \ 135 \ \mathrm{C_2F_50}^+ (12.7), \ 131 \ \mathrm{C_3F_5}^+ \\ & (18.8), \ 119 \ \mathrm{C_2F_5}^+ (5.9), \ 100 \ \mathrm{C_2F_4}^+ (11.9), \ 93 \ \mathrm{C_3F_3}^+ (4.9), \ 69 \ \mathrm{CF_3} \\ & (100), \ 50 \ \mathrm{CF_2}^- (2.6), \ 31 \ \mathrm{CF}^+ (5.1). \ \ \mathrm{Found:} \ \mathrm{C}, \ 22.81\%. \ \mathrm{Calculated} \\ & \mathrm{for} \ \mathrm{C_7F_{14}O:} \ \mathrm{C}, \ 22.95\%. \end{array}$

 $\begin{array}{c} \underline{\operatorname{Perfluoro}\left(2-\operatorname{oxabicyclo}\left[3.3.0\right]\operatorname{octane}\right)\left(\underline{8a}\right)}_{(nc)} (nc) \ had \ bp \ 74.3 \sim 75.0 \ ^{\circ}\mathrm{C}, \ n_D^{20} 1.2908 \ and \ d_4^{20} 1.7828. \ IR: \ 1377 \ (w, sh), \ 1355 \ (m), \\ 1310 \ (s), \ 1266 \ (m), \ 1239 \ (vs), \ 1224 \ (vs), \ 1206 \ (s, sh), \ 1185 \ (s), \\ 1163 \ (m, sh), \ 1107 \ (s), \ 1096 \ (s, sh), \ 1087 \ (m, sh), \ 1041 \ (w), \ 1010 \\ (m), \ 970 \ (s), \ 963 \ (m, sh), \ 886 \ (w), \ 860 \ (m), \ 850 \ (m), \ 638 \ (w, sh), \\ 625 \ (w), \ 586 \ (w, sh), \ 575 \ (w). \ Mass: \ 309 \ [M-F]^+ (6.1), \ 281 \ C_6F_{11}^+ \\ (4.1), \ 262 \ C_6F_{10}^+ (4.6), \ 259 \ C_6F_{9} \circ^+ (2.5), \ 231 \ C_5F_{9}^+ (14.8), \ 212 \\ C_5F_8^+ (14.8), \ 209 \ C_5F_7 \circ^+ (4.1), \ 193 \ C_5F_7^+ (11.0), \ 181 \ C_4F_7^+ (24.7), \\ 178 \ C_4F_6 \circ^+ (37.0), \ 162 \ C_4F_6^+ (16.7), \ 159 \ C_4F_5 \circ^+ (9.9), \ 150 \ C_3F_6^+ \end{array}$

 $\begin{array}{l} (3.7), \ 143 \ {\rm C_4F_5}^+(12.0), \ 131 \ {\rm C_3F_5}^+(100), \ 124 \ {\rm C_4F_4}^+(6.4), \ 119 \\ {\rm C_2F_5}^+(11.4), \ 112 \ {\rm C_3F_4}^+(6.6), \ 109 \ {\rm C_3F_30}^+(8.2), \ 100 \ {\rm C_2F_4}^+(39.0), \\ 97 \ {\rm C_2F_30}^+(7.0), \ 93 \ {\rm C_3F_3}^+(29.0), \ 81 \ {\rm C_2F_3}^+(3.7), \ 74 \ {\rm C_3F_2}^+(5.2), \\ 69 \ {\rm CF_3}^+(52.9), \ 50 \ {\rm CF_2}^+(5.8), \ 47 \ {\rm CoF}^+(8.0), \ 31 \ {\rm CF}^+(21.5). \\ \mbox{Found: C, } 25.60\%. \ \mbox{Calculated for } {\rm C_2F_{12}0}: \ \mbox{C, } 25.61\%. \end{array}$

 $\begin{array}{c} \underline{\operatorname{Perfluoro}\left(3-\operatorname{methoxy-2-oxabicyclo}[3.3.0]\operatorname{octane}\right)\left(\underline{19}\right)}_{1,2922} (nc) \\ \text{had bp } 98.5 \sim 98.8 \ ^{\circ}C, \ n_D^{20}1.2922 \ \text{and} \ d_4^{20}1.8017. \ IR: \ 1351 \ (m), \\ 1309 \ (s,sh), \ 1292 \ (s), \ 1273 \ (s,sh), \ 1241 \ (vs), \ 1223 \ (s), \ 1207 \\ (s), \ 1187 \ (vs), \ 1169 \ (s,sh), \ 1142 \ (m), \ 1096 \ (m,sh), \ 1077 \ (s), \\ 1040 \ (m), \ 1013 \ (s), \ 967 \ (s), \ 922 \ (m), \ 906 \ (w), \ 884 \ (w), \ 848 \\ (w,sh), \ 837 \ (m), \ 814 \ (w), \ 756 \ (w,sh), \ 737 \ (w), \ 640 \ (w), \ 629 \ (w), \\ 609 \ (w), \ 587 \ (w), \ 554 \ (w), \ 518 \ (w), \ 480 \ (w). \ Mass: \ 309 \ [\operatorname{M-ocf}_3]^+ \\ (8.3), \ 262 \ C_7F_{12}O^+(5.7), \ 231 \ C_5F_9^+(6.2), \ 212 \ C_6F_{10}O^+(11.9), \ 193 \\ C_5F_7^+(7.2), \ 181 \ C_4F_7^+(6.0), \ 162 \ C_4F_6^+(8.1), \ 131 \ C_3F_5^+(18.8), \\ 100 \ C_2F_4^+(10.9), \ 93 \ C_3F_3^+(10.3), \ 69 \ CF_3^+(100), \ 47 \ COF^+(8.3). \\ 1^9F \ nmr: \ \phi(CF_3) \ 55.9 \ (d) \ [J(CF_3-O-CF-O)=10.3]; \ \phi(CF) \ 189.0 \ (mult); \\ \phi(O-CF-O) \ 83.0 \ (mult). \ Found: \ C, \ 24.30\%. \ Calculated \ for \ C_8F_{14}O_2: \\ C, \ 24.37\%. \end{array}$

```
<sup>19</sup>F nmr data of <u>8a</u>, <u>27</u>, <u>31</u> and <u>32</u> are shown in Table 1.
```

Fluorination of 2

Sample 2 (35.2 g, 0.226 mol) was fluorinated similarly under the following conditions; 3.5 A/dm², 5.2~8.1 V, 5~6 °C, 420 min (226 Ahr). The product weighed 2.6 g for those collected at -196 °C, 20.7 g for those collected at -78 °C and 26.3 g for cell drainings respectively. Work-up of the products was the same as those explained for the fluorination of 1. Products trapped at -78 °C were fractionally distilled into 3 portions and these fractions and cell drainings were subsequently analysed by GLC(Col. A). Thus, the following compounds were obtained; Fraction 1, bp room temp~74.5 °C, 2.7 g [product (compound number), q Yield], perfluoro-n-pentane(37) (0.1), perfluoro-isopentane(38) (0.1), perfluorocyclopentane(39) (0.1), perfluoron-hexane(40) (0.1), 25 (0.3), 26 (0.4), 15 (0.6), 16 (0.1), 17 (0.3), 18 (0.4), unidentified (0.2). Fraction 2, bp 76.0~ 83.3 °C, 4.2 g, 15 (0.9), 16 (0.1), 17 (1.1), 18 (1.7), unidentified (0.4). Residue, 12.3 g, <u>15</u> (0.1), <u>17</u> (0.8), <u>18</u> (0.8), 9 (3.6), perfluoro(3-cyclopentylpropionyl fluoride)(41) (0.5),

perfluoro(cyclohexylacetyl fluoride)($\underline{42}$) (0.7), unidentified (5.8), Cell drainings, 26.3 g, $\underline{15}$ (0.3), $\underline{17}$ (0.8), $\underline{18}$ (1.0), <u>9</u> (6.4), $\underline{41}$ (1.2), $\underline{42}$ (2.1), <u>20</u> (3.8), unidentified (10.7). The yields of <u>9</u> and <u>20</u> were 11.8% and 4.3% respectively. The compounds in the -196 °C trap were primarily <u>22</u> and small amounts of <u>23</u> and <u>24</u>. The sodium salts of acids (0.5 g) consisted of <u>36</u> (54 mol%), <u>37</u> (31), <u>38</u> (9) and <u>39</u> (5).

 $\begin{array}{c} \underline{\operatorname{Perfluoro}\left(7-\operatorname{oxabicyclo}\left[4.3.0\right]\operatorname{nonane}\right)\left(9\right)}_{2} \text{ had bp } 98.3 \sim 98.7 \\ ^{\circ}\text{C}, n_D^{20}1.2991 \text{ and } d_4^{20}1.8412. \text{ IR: } 1366 \text{ (m)}, 1308 \text{ (m)}, 1287 \text{ (s)}, \\ 1249 \text{ (vs)}, 1232 \text{ (vs,sh)}, 1189 \text{ (vs)}, 1177 \text{ (s,sh)}, 1160 \text{ (m)}, 1134 \\ \text{(w)}, 1086 \text{ (vs)}, 1065 \text{ (ms)}, 1027 \text{ (m)}, 1000 \text{ (ms)}, 965 \text{ (s)}, 866 \text{ (w)}, \\ 838 \text{ (ms)}, 813 \text{ (w)}, 657 \sim 672 \text{ (w)}, 628 \text{ (w)}, 607 \text{ (w)}, 570 \text{ (w)}, 532 \\ \text{(w)}, 510 \text{ (w)}, 466 \text{ (w)}. \text{ Mass: } 359 \text{ [M-F]}^+(5.8), 331 \text{ C}_7\text{F}_{13}^+(3.7), \\ 293 \text{ C}_7\text{F}_{11}^+(2.2), 281 \text{ C}_6\text{F}_{11}^+(2.5), 243 \text{ C}_6\text{F}_9^+(22.7), 231 \text{ C}_5\text{F}_9^+ \\ \text{(15.1)}, 212 \text{ C}_5\text{F}_8^+(43.6), 193 \text{ C}_5\text{F}_7^+(13.5), 181 \text{ C}_4\text{F}_7^+(27.6), 162 \\ \text{C}_4\text{F}_6^+(11.0), 143 \text{ C}_4\text{F}_5^+(12.0), 131 \text{ C}_3\text{F}_5^+(100), 119 \text{ C}_2\text{F}_5^+(14.7), \\ 100 \text{ C}_2\text{F}_4^+(30.4), 97 \text{ C}_2\text{F}_3\text{ o}^+(5.5), 93 \text{ C}_3\text{F}_3^+(19.9), 69 \text{ CF}_3^+(66.6), \\ 50 \text{ CF}_2^+(2.8), 47 \text{ COF}^+(5.5), 31 \text{ CF}^+(9.2). \overset{19}{}\text{ F nmr: } \phi(\alpha \text{ CF}_2) \text{ 79.5} \\ \text{and } 84.6 \text{ (J}_{AB}=127 \text{ Hz}); \phi(\text{CF}) \text{ 191.7}(\text{mult}). \text{ Found: C, } 25.28\$. \\ \text{Calculated for } \text{C}_8\text{F}_{14}\text{ O}: \text{ C, } 25.40\$. \end{array}$

 $\begin{array}{l} & \underline{\operatorname{Perfluoro}\left(6-\operatorname{methoxy-7-oxabicyclo}\left[4.3.0\right]\operatorname{nonane}\right)\left(\underline{20}\right)}\left(\operatorname{nc}\right)} \\ & \operatorname{had} \ \operatorname{bp} \ 114.5\sim 115.3 \ ^{\circ}\mathrm{C}, \ \operatorname{n_D}^{20}1.3005 \ \operatorname{and} \ \operatorname{d_4}^{20}1.8569. \ \mathrm{IR}: \ 1355 \ (\text{w,sh}), \\ & 1315 \ (\mathrm{ms}), \ 1282\sim 1297 \ (\mathrm{s}), \ 1237\sim 1250 \ (\mathrm{s}\sim \mathrm{vs}), \ 1163\sim 1186 \\ & (\mathrm{s}\sim \mathrm{vs}), \ 1183 \ (\mathrm{ms}), \ 1053 \ (\mathrm{s}), \ 1025 \ (\mathrm{w}), \ 1002 \ (\mathrm{ms}), \ 966 \ (\mathrm{s}), \ 901 \\ & (\mathrm{m}), \ 833 \ (\mathrm{m}), \ 818 \ (\mathrm{m}), \ 695 \ (\mathrm{w}), \ 630\sim 655 \ (\mathrm{w}), \ 598 \ (\mathrm{w}), \ 510 \ (\mathrm{w}). \\ & \operatorname{Mass:} \ 359 \ [\mathrm{M-OCF_3}]^+(5.6), \ 281 \ \mathrm{C_6F_1}^+(2.6), \ 243 \ \mathrm{C_6F_9}^+(10.3), \\ & 212 \ \mathrm{c_5F_8}^+(20.2), \ 193 \ \mathrm{c_5F_7}^+(5.3), \ 181 \ \mathrm{c_4F_7}^+(4.5), \ 162 \ \mathrm{c_4F_6}^+(4.0), \\ & 143 \ \mathrm{c_4F_5}^+(3.6), \ 131 \ \mathrm{c_3F_5}^+(15.7), \ 100 \ \mathrm{c_2F_4}^+(5.4), \ 93 \ \mathrm{c_3F_3}^+(4.5), \\ & 69 \ \mathrm{cF_3}^+(100), \ 47 \ \mathrm{coF^+(5.6)}, \ 31 \ \mathrm{cF^+(2.2)}. \ \ 19F \ \mathrm{nmr:} \ \phi(\mathrm{CF_3}) \ 56.0 \\ & (\mathrm{d}) \ [\mathrm{J}(\mathrm{CF_3-O-CF-O})=10.4 \ \mathrm{Hz}]; \ \phi(\mathrm{O-CF-O}) \ 80.4 \ (\mathrm{mult}); \ \phi(\mathrm{CF}) \ 191.2 \\ & (\mathrm{mult}). \ \ \mathrm{Found:} \ \mathrm{C}, \ 24.19\$. \ \mathrm{Calculated} \ \mathrm{for} \ \mathrm{C_9F_16}^{O_2}: \ \mathrm{C}, \ 24.32\$. \end{array}$

Perfluoro(3-cyclopentylpropionyl fluoride)(41)(nc) showed the following infrared spectrum. IR: 1887 v(c=o)(s), 1316 (s), 1274 1279 (s), 1251 (vs), 1224 (vs), 1179 (s), 1141 (m), 1029 1047 (m), 988 (m), 971 (m), 871 (w), 801 (w), 785 (w), 729 739 (w), 709 (w), 674 (w), 607 (w), 569 (w).

TABLE	1
-------	---

¹⁹ F nmr spectra of <u>8a</u>, <u>10</u>, <u>11a</u>, <u>14</u>, <u>27</u>, <u>31</u>, <u>32</u>, <u>43</u>, <u>44</u>, <u>46</u>, <u>48</u>, <u>50</u>, <u>52</u> and <u>54</u>

Compd	Formula		Chemical shift ^{a,b}	J (Hz) ^b
		a	80.9 00.1	a-b=130
	F, F	a	88.1,	c-d=258
<u>8a</u>	F F	с А	110./J 127.6 AB	
		a	127.03	
	f ^a	e f	129.0	
<u></u>		T.	129,0	
		a	84.4	d-e=264
	_ c	b	123.0	f-g=258
	$F \xrightarrow{F'} F \xrightarrow{F_2} F \xrightarrow{b}$	С	134.3	
<u>10</u>	$r = \int X \int Z^2$	d	123.7 _]	
	$g \xrightarrow{F}_{F} (0 \xrightarrow{F}_{2a})$	е	131.1 ⁵ AB	
	f f f e d	f	125.1 ₇	
		a	130.6 ^{5AB}	
		a	83.5	d-e≈290
		b	117.4	f-g≈290
	ר - די די די	С	124.4	h-i=220
	$i F^{F} + F^{F_2} F_2^{b}$	d	J.T	
<u>11a</u>	$h F X O F_2$	е	JAB	
	g F F F d	f]7-2	
	fe	g	J AB	
		h	JJ	
		i	J AB	

a) ¹⁹_F chemical shifts in ppm relative to internal CCl₃F.
b) Only evident chemical shifts and coupling constants are given.

134

	a	72.91-	a-b=144
	b	82.6 JAB	c-d=268
	с	121.91.	e-f=258
₽ ^F ⊁ ^F f	d	128.7 JAB	k-1=131
	е	128.3 ₁₊	f-h=26
$r_{F}^{h}F$	f	132.2 ^{JAB}	
$\frac{14}{5}$	g	179.2	
	h	183.4	
1 a	i		
	j		
	k	81.4	
	1	90.3	
	a	55.9	a-b=9.2
е,	b	77.9	d-e=270
	с	184.9	f - g=272
$\frac{27}{g_{\rm F}}$ g F $\sum_{r=1}^{F}$ a	d	^{125,2}],	
F b CF20CF3	е	130.2 ¹ AB	
^F F F	f	130.47	
	g	133.1 ⁵ AB	
	a	δ=3.98	a-b=5.9
e	b	112.3	b-d=18.6
^f _F ^F ^F ^F ^C	с	183.2	d-e=270
$\frac{31}{g}$ g F χ^{r} g a	d	124.2 ₇₋	f-g=257
$F \xrightarrow{F} F \xrightarrow{Cr} 2 \overset{Cr}{\overset{O}} \overset{Cr}{\overset{Cr}} {} {} Cr} \overset{Cr}{\overset{Cr} {} {} {} Cr} {} {} {} {} {} {} {} {} {} {} {} {} {}$	e	129.1 JAB	
F F	f	129.87-	
	g	133.0 JAB	

135

(<u>cont. overleaf</u>)

		a	δ=4.01	b-c=16
		b	179.5	b-d=16
	ed fFFa	с	118.27-	c-d=292
	$F \rightarrow F_{Fb}$	d	132.2 AB	e-f=280
<u>32</u>	$\operatorname{G}_{\mathrm{h}\mathrm{F}}^{\mathrm{g}\mathrm{F}} X \times \operatorname{COCH}_{3}^{\mathrm{a}}$	е	123.41-	g-h=286
	"FFFFÖ	f	139.5 AB	
		g	122.7 ₁₋	
		h	142.0 JAB	
		a	δ=3.97	e-f=274
		b	116.2	a - h = 260
	r e	с	117.9	9
	$F = F^{F} = d$	d	185.1	
<u>43</u>	n F CF ₂ CF ₂ COCH ₃	е	123.17_	
	FFF C b O	f	128.7 JAB	
	-	g	128.51-	
		h	132.2 ^{JAB}	
		a	δ=3.92	d-e=296
		h	110.6	$f_{-\alpha-286}$
		5	110.0	1 - 9-200
	f e	c	186.5	h-i=296
	g _F f F F F F F F F F F F F F F F F F F F	c d	186.5 119.4 ₁₁	h-i=296
<u>44</u>	h ^g _F h ^F _F h ^F _F h ^F _F h ^C _F h ^C _F h ^C _F h ^C _F	c d e	186.5 119.4 131.0] ^J AB	h-i=296
<u>44</u>	$\begin{array}{c} \begin{array}{c} f_{F} & f_{F} \\ h_{F} \\ i \\ F_{F} $	c d e f	186.5 119.4 131.0 ^J AB	h-i=296
<u>44</u>	$h_{F}^{g_{F}} \xrightarrow{f_{F}}_{F_{F}} \xrightarrow{e}_{F}^{F^{c}} f_{F^{c}}^{a}$ $i_{F}^{F} \xrightarrow{F_{F}}_{F_{F}} \xrightarrow{F_{F}} f_{F^{c}}^{c} \xrightarrow{c}_{O}^{a}$	c d e f g	186.5 119.4 131.0 ^{AB} 122.8 140.3	h-i=296
<u>44</u>	$h_{F}^{g_{F}} \xrightarrow{f_{F}}_{F_{F}} \xrightarrow{e}_{F}^{F} \xrightarrow{F}_{F}^{d} \xrightarrow{F}_{F}^{F} \xrightarrow{F}_{F}^{c} \xrightarrow{C}_{F} \xrightarrow{C}_{O} \xrightarrow{C}_{O} \xrightarrow{A}_{O}^{d}$	c d e f g h	186.5 119.4 131.0 122.8 140.3 JAB 124.4	h-i=296
<u>44</u>	$h_{F}^{g_{F}} \xrightarrow{f_{F}}_{F_{F}} \xrightarrow{e}_{F}^{f_{F}} \xrightarrow{F}_{F}^{d} \xrightarrow{F}_{F}^{c} \xrightarrow{CF_{F}}_{O} \xrightarrow{COCH_{3}}^{a}$	c d e f g h i	186.5 119.4 131.0 JAB 122.8 140.3 JAB 124.4 JAB	h-i=296
<u>44</u>	$h_{F}^{g_{F}} \xrightarrow{f_{F}}_{F_{F}} F_{F}^{e} \xrightarrow{f_{F}}_{F} F_{F}^{d}$ $i_{F}^{F} \xrightarrow{F_{F}}_{F_{F}} F_{F}^{c} \xrightarrow{CF_{2}}_{O} \xrightarrow{COCH_{3}}$	c d e f g h i	110.0 186.5 119.4 131.0 JAB 122.8 140.3 JAB 124.4 142.5 JAB	h-i=296
<u>44</u>	$h_{F}^{g_{F}} \xrightarrow{f_{F}}_{F} \xrightarrow{F}_{F}^{f_{F}} \xrightarrow{F}_{F}^{d} \xrightarrow{f_{F}}_{F} \xrightarrow{F}_{F} \xrightarrow{F}_{F} \xrightarrow{F}_{F} \xrightarrow{F}_{O} \xrightarrow{G}_{O} \xrightarrow{a}_{O}$	c d e f g h i	110.0 186.5 119.4 131.0 JAB 122.8 140.3 JAB 124.4 142.5 JAB 82.2	e-f=262
<u>44</u>	$f_{F} = f_{F} = f_{F} = f_{F}$	c d e f g h i a b	110.0 186.5 119.4 131.0 JAB 122.8 140.3 JAB 124.4 142.5 JAB 82.2 137.2	e-f=262 g-h=258
<u>44</u>	$g_{F} \xrightarrow{f}_{F} F_{F}^{e}$	c d e f g h i a b c	110.0 186.5 119.4 131.0 JAB 122.8 140.3 JAB 124.4 142.5 JAB 82.2 137.2 82.9 120.2	e-f=262 g-h=258
<u>44</u> 	$\begin{array}{c} f_{F} & e_{F} \\ h_{F} & F_{F} \\ i & F_{F} \\ F_{F} & F_{F} \\ F_{$	c d e f g h i b c d	110.0 186.5 119.4 131.0 JAB 122.8 140.3 JAB 124.4 142.5 JAB 82.2 137.2 82.9 130.2	e-f=262 g-h=258
<u>44</u> 	$f_{F} \stackrel{e}{\underset{F}{}} f_{F} \stackrel{e}{\underset{F}{} f_{F} \stackrel{e}{\underset{F}{}} f_{F} \stackrel{e}{\underset{F}{} f_{F} \stackrel{e}{\underset{F}{}} f_{F} \stackrel{e}{\underset{F}{} f_{F} \stackrel{e}{\underset{F}{}} f_{F} \stackrel{e}{\underset{F}{} f_{F} \stackrel{e}{\underset{F}{}} f_{F} \stackrel{e}{\underset{F} \stackrel{e}{\underset{F}} f_{F} \stackrel{e}{\underset{F} \stackrel{e}{\underset{F}} f_{F} \stackrel{e}{\underset{F} \stackrel{e}{\underset{F} \stackrel{e}{\underset{F} \stackrel{e}{\underset{F} \stackrel{e}{\underset{F} \stackrel{e}{\underset{F} \overset{e}{\underset{F} \overset{e}{\underset{F} \overset{e}{F$	c d e f g h i a b c d e	110.0 186.5 119.4 131.0 JAB 122.8 140.3 JAB 124.4 142.5 JAB 82.2 137.2 82.9 130.2 125.1 JAB	e-f=262 g-h=258
<u>44</u> 	$f_{F} \stackrel{e}{\underset{F}{}} f_{F} \stackrel{e}{\underset{F}{} f_{F} \stackrel{e}{\underset{F}{} f_{F} \stackrel{e}{\underset{F}{} f_{F} \stackrel{e}{\underset{F} \stackrel{e}{\underset{F}{}} f_{F} \stackrel{e}{\underset{F} \stackrel{e}$	c d e f g h i b c d e f	110.0 186.5 119.4 131.0 JAB 122.8 140.3 JAB 124.4 142.5 JAB 82.2 137.2 82.9 130.2 125.1 133.9 JAB	e-f=262 g-h=258
<u>44</u> 	$f_{F} \stackrel{e}{\underset{F}{}} f_{F} \stackrel{e}{\underset{F}{} f_{F} \stackrel{e}{\underset{F}{} f_{F} \stackrel{e}{\underset{F} \stackrel{e}{\underset{F}} f_{F} \stackrel{e}{\underset{F} \stackrel{e}{F$	c d e f g h i b c d e f g	120.0 186.5 119.4 131.0 JAB 122.8 140.3 JAB 124.4 142.5 JAB 82.2 137.2 82.9 130.2 125.1 133.9 JAB 129.6 JAB	e-f=262 g-h=258

Table 1 (cont.)

Perfluoro(cyclohexylacetyl fluoride)(42) (nc) showed the following infrared spectrum. IR: 1888 v(c=o)(s) 1298~1318 (s), 1258 (vs), 1217 (vs), 1200 (vs), 1168 (m), 1136 (m), 1059 (m), 1045 (w,sh), 1014 (ms), 970 (vs), 855 (w), 845 (w), 820 (m), 760 (w), 736 (w), 676 (w), 623~635 (w), 500 (w), 465 (w). Further characterization of <u>3a</u> and <u>42</u> was by conversion to methyl esters by treating them with methanol at room temperature.

 $\begin{array}{c} \underline{\text{Methyl perfluorocyclohexylacetate (44)}} (nc) \ had \ bp \ 151.3 \\ 152.0 \ \ ^{20}{} 1.3266 \ and \ d_4^{20} 1.7530. \ IR(capillary \ film): 2970 \ (w), \\ 1787 \ \nu(c=o) \ (vs), \ 1442 \ (m), \ 1318 \ (s), \ 1190 \ \sim 1273 \ (vs), \ 1175 \ (s,sh), \\ 1160 \ (s,sh), \ 1139 \ (m), \ 1081 \ (m), \ 1055 \ (w), \ 1016 \ (s), \ 967 \ (vs), \\ 950 \ (m,sh), \ 864 \ (w), \ 852 \ (m), \ 801 \ (ms), \ 788 \ (w), \ 774 \ (w), \ 695 \\ (w), \ 634 \ (m), \ 627 \ (w), \ 502 \ (w), \ 465 \ (w). \ Mass: \ 371 \ [M-F]^+ \ (4.2), \\ 343 \ C_8F_{13}^+ \ (6.3), \ 331 \ C_7F_{13}^+ \ (5.3), \ 281 \ C_6F_{11}^+ \ (4.0), \ 243 \ C_6F_9^+ \ (7.4), \\ 193 \ C_5F_7^+ \ (6.3), \ 181 \ C_4F_7^+ \ (9.5), \ 162 \ C_4F_6^+ \ (8.5), \ 143 \ C_4F_5^+ \ (6.3), \\ 131 \ C_3F_5^+ \ (27.6), \ 100 \ C_2F_4^+ \ (10.3), \ 93 \ C_3F_3^+ \ (12.8), \ 69 \ CF_3^+ \ (41.9), \\ 59 \ Co_2CH_3^+ \ (100). \ \ Found: \ C, \ 27.65\%. \ Calculated \ for \ C_9H_3F_{13}O_2: \\ c, \ 27.69\%. \end{array}$

¹⁹ F nmr data of <u>43</u> and <u>44</u> are shown in Table/1.

Fluorination of <u>3</u>

Sample 3 (35.5 g, 0.228 mol) was fluorinated similarly under the following conditions; 3.5 A/dm², 5.1~8.1 V, 5~6 °C, 281 min (216 Ahr).

The amounts of the products were 1.8 g for those collected at -196 °C, 28.3 g for those collected at -78 °C and 28.0 g for the cell drainings respectively. Work-up of the products was almost the same as explained for the fluorination of $\underline{1}$. Thus, the following compounds were obtained; product in the -78 °C trap, 28.3 g, perfluoro-n-butane ($\underline{45}$)(0.4), $\underline{39}$ (0.7), $\underline{17}$ (6.7), $\underline{18}$ (1.2), $\underline{10}$ (3.4), perfluoro(cyclopentyl-n-propylether)($\underline{46}$) (1.6), $\underline{9} + \underline{12}$ (2.5), $\underline{41}$ (0.4), unidentified (11.4). Cell drainings, 28.3 g, $\underline{17}$ (3.0), $\underline{18}$ (0.6), $\underline{10}$ (7.3), $\underline{46}$ (2.3), $\underline{9} + \underline{12}$ (4.8), $\underline{21}$ (2.5), $\underline{41}$ (0.7), $\underline{42}$ (0.8), unidentified (6.3).

Among these products, a mixture of <u>9</u> and <u>12</u> was isolated from other products by GLC(Col. C and D) and were characterized spectroscopically. Based on the relative areas of absorption peaks due to the -CF groups (ϕ 185.6 for <u>12</u> and ϕ 191.7 for <u>9</u>, respectively) in the ¹⁹F nmr spectrum of the mixture of <u>12</u> and <u>9</u>, the consistuent ratio was determined to be <u>12/9</u>= 1 : 0.68. The yields of <u>10</u> and <u>21</u> were 12.4% and 2.5% respectively. The compounds in the -196 °C trap consisted primarily of <u>22</u> and small amounts of <u>23</u> and <u>24</u>. The sodium salts of acids (0.5 g) consisted of <u>36</u> (30 mol%), <u>37</u> (62), <u>38</u> (4) and <u>39</u> (5).

 $\begin{array}{c} \underline{\operatorname{Perfluoro}\left(1-\operatorname{oxaspiro}\left[4.4\right]\operatorname{octane}\right)\left(10\right)}_{2}(\operatorname{nc}) \ \operatorname{had} \ \operatorname{bp} \ 91.0 \sim 92.3}\\ ^{\circ}\mathrm{C}, \ n_{D}^{20}1.2949 \ \operatorname{and} \ d_{4}^{20}1.8099. \ \mathrm{IR:} \ 1385 \ (\mathrm{m}), \ 1316 \ (\mathrm{s}), \ 1295 \ (\mathrm{m,sh})\\ 1255 \ (\mathrm{ms}), \ 1220 \ (\mathrm{vs}), \ 1200 \ (\mathrm{s}), \ 1130 \ (\mathrm{s}), \ 1107 \ (\mathrm{s}), \ 1065 \ (\mathrm{m}),\\ 1019 \ (\mathrm{ms}), \ 973 \ (\mathrm{s}), \ 864 \ (\mathrm{w}), \ 810 \ (\mathrm{s}), \ 656 \ (\mathrm{w}), \ 613 \ (\mathrm{w}), \ 593 \ (\mathrm{w}),\\ 570 \ (\mathrm{w}), \ 545 \ (\mathrm{m}). \ \operatorname{Mass:} \ 378 \ \mathrm{M}^{+}(3.6), \ 359 \ [\mathrm{M-F]}^{+}(20.2), \ 309\\ \mathrm{C}_{7}\mathrm{F}_{11}\mathrm{O}^{+}(5.1), \ 259 \ \mathrm{C}_{6}\mathrm{F}_{9}\mathrm{O}^{+}(60.2), \ 243 \ \mathrm{C}_{6}\mathrm{F}_{9}^{+}(29.3), \ 209 \ \mathrm{C}_{5}\mathrm{F}_{7}\mathrm{O}^{+}\\ (13.3), \ 193 \ \mathrm{C}_{5}\mathrm{F}_{7}^{+}(24.4), \ 181 \ \mathrm{C}_{4}\mathrm{F}_{7}^{+}(33.2), \ 143 \ \mathrm{C}_{5}\mathrm{F}_{5}^{+}(23.0), \ 131\\ \mathrm{C}_{3}\mathrm{F}_{5}^{+}(39.7), \ 109 \ \mathrm{C}_{3}\mathrm{F}_{3}\mathrm{O}^{+}(29.8), \ 100 \ \mathrm{C}_{2}\mathrm{F}_{4}^{+}(100), \ 93 \ \mathrm{C}_{3}\mathrm{F}_{3}^{+}(39.7),\\ 69 \ \mathrm{CF}_{3}^{+}(86.4), \ 50 \ \mathrm{CF}_{2}^{+}(12.3), \ 31 \ \mathrm{CF}^{+}(27.8). \ \mathrm{Found:} \ \mathrm{C}, \ 25.41\%.\\ \mathrm{Calculated} \ \mathrm{for} \ \mathrm{C}_{8}\mathrm{F}_{14}\mathrm{O}: \ \mathrm{C}, \ 25.40\%.\end{array}$

 $\begin{array}{l} & \underbrace{\operatorname{Perfluoro}\left(\operatorname{cyclopentyl\ n-propylether}\right)\left(\underline{46}\right)}_{\circ}(nc) \text{ had bp 93.0} \\ \sim 93.5 \ ^{\circ}\mathrm{C}, \ n_{\mathrm{D}}^{20} \langle 1.28 \ \text{and} \ d_{4}^{20} 1.7581. \ \mathrm{IR:} \ 1346 \ (\mathrm{ms}), \ 1322 \ (\mathrm{s}), \\ 1283 \ (\mathrm{ms}), \ 1248 \ (\mathrm{vs}), \ 1222 \ (\mathrm{vs}), \ 1181 \ (\mathrm{ms}), \ 1160 \ (\mathrm{vs}), \ 1138 \ (\mathrm{ms}), \\ 1076 \ (\mathrm{w}), \ 1043 \ (\mathrm{w}), \ 1006 \ (\mathrm{vs}), \ 991 \ (\mathrm{s}), \ 977 \ (\mathrm{ms}), \ 894 \ (\mathrm{w}), \ 791 \\ (\mathrm{w}), \ 738 \sim 751 \ (\mathrm{m}), \ 701 \ (\mathrm{w}), \ 615 \ (\mathrm{m}), \ 564 \ (\mathrm{w}), \ 537 \ (\mathrm{m}). \ \mathrm{Mass:} \\ 397 \ [\mathrm{M-F]}^+(4.0), \ 297 \ \mathrm{C_6F_{11}}^{\mathrm{o}+}(6.1), \ 231 \ \mathrm{C_5F_9}^+(18.5), \ 181 \ \mathrm{C_4F_7}^+ \\ (20.0), \ 169 \ \mathrm{C_3F_7}^+(62.4), \ 131 \ \mathrm{C_3F_5}^+(52.6), \ 119 \ \mathrm{C_2F_5}^+(12.6), \\ 100 \ \mathrm{C_2F_4}^+(22.6), \ 93 \ \mathrm{C_3F_3}^+(9.5), \ 69 \ \mathrm{CF_3}^+(100). \ \mathrm{Found:} \ \mathrm{C}, \ 23.00\%. \\ \mathrm{Calculated for} \ \mathrm{C_8F_{16}O:} \ \mathrm{C}, \ 23.08\%. \end{array}$

 $\begin{array}{c} \underline{Perfluoro\left(2-methoxy-1-oxaspiro\left[4.4\right]octane\right)\left(21\right)} \ (nc) \ had \\ bp \ 106.5 \sim 107.7 \ ^{o}C, \ n_{D}^{20} 1.2953 \ and \ d_{4}^{20} 1.8500. \ IR: \ 1368 \sim 1383 \\ (w), \ 1318 \ (s), \ 1288 \ (s), \ 1246 \ (vs), \ 1211 \ (s \sim vs), \ 1195 \ (s), \end{array}$

1177 (m), 1149 (m), 1119 (m), 1103 (m), 1081 (s), 1023 (m), 991 (m), 974 (ms), 881 (w), 804 (m), 736 (w), 616 (w), 596 (w), 567 (w), 546 (w). Mass: 359 $[M-OCF_3]^+(7.0)$, 309 $C_7F_{11}O^+(2.7)$, 281 $C_{6}F_{11}^{+}(2.6)$, 243 $C_{6}F_{9}^{+}(27.9)$, 231 $C_{5}F_{9}^{+}(4.0)$, 193 $C_{5}F_{7}^{+}(6.2)$, $\begin{array}{c} \overset{\circ}{181} \overset{\circ}{C}_{4} F_{7}^{+}(7.9) , 131 \overset{\circ}{C}_{3} F_{5}^{+}(20.8) , 119 \overset{\circ}{C}_{2} F_{5}^{+}(4.7) , 100 \overset{\circ}{C}_{2} F_{4}^{+}(17.8) , \\ 93 C_{3} F_{3}^{+}(8.5) , 69 CF_{3}^{+}(100) . \end{array} \right) \begin{array}{c} \overset{\circ}{19}_{\mathrm{F}} \ \mathrm{nmr} : \ \phi(\mathrm{CF}_{3}) \ 55.9 \ \mathrm{(d)} \ [\mathrm{J}(\mathrm{CF}_{3}-\mathrm{F}) = \end{array} \right)$ 10.2 Hz]; $\phi(CF)$ 83.3(mult). Found: C, 24.23%. Calculated for $C_9F_{16}O_2$: C, 24.32%. 19_F nmr data of <u>10</u> and <u>46</u> are shown in Table 1.

Fluorination of $\underline{4}$

Sample 4 (34.9 g, 0.205 mol) was fluorinated similarly under the following conditions; 3.5 A/dm^2 , 5.1~8.0 V, 5~6 °C, 439 min (236 Ahr).

The products weighed 2.2 g for those collected at -196 °C, 11.1 g for those collected at -78 °C and 51.9 g for cell drainings respectively. Work-up of the products was the same as explained for the fluorination of 2. Products collected in the -78 °C trap and cell drainings were subjected to distillation and were separated into few fractions before GC analysis respectively. Distillation of the product collected at -78 °C; Fraction 1, room temp~97.9 °C, 1.5 g, 45 (trace), 37 (0.1), 38 (trace), 25 (0.6), 26 (0.4), 15 (trace), 16 (trace), unidentified (0.4). Fraction 2, 99.5~105.5 °C, 3.2 g, 15 (trace), <u>17</u> (0.2), <u>18</u> (0.1), perfluoro(1-methyl-2-ethylpentane)(<u>47</u>) (0.7), perfluoro(n-propylcyclopentane)(48) (1.0), perfluoro(ethylcyclohexane)(49) (0.8), unidentified (0.4). Residue, 4.9 g, 47 (0.1), 48 (0.6), 47 (0.5), 11a (1.6), unidentified (2.1). Distillation of cell drainings; Fraction 1, bp room temp~112.9 °C, 3.1 g, 17 (trace), 18 (trace), 47 (0.6), 48 (1.0), 49 (0.9), 11a (0.1), unidentified (0.5). Fraction 2, bp 114.5~127.5 °C, 14.2 g, 48 (0.7), 49 (0.5), 11a (7.3), unidentified (5.7), Fraction 3, bp 128.5~133.5 °C, 7.4 g, <u>11a</u> (3.1), unidentified (4.3). Residue, 17.5 g, <u>lla</u> (2.4), unidentified (15.1). The yield of <u>lla</u> was 16.7%. The compounds in the -196 °C trap were mostly 22 and small amounts of 23 and 24. The sodium salts of acids (1.0 g) consisted of 36 (27 mol%), 37 (67), 38 (4) and 39 (2).

Perfluoro (n-propylcyclopentane) (<u>48</u>) (nc) had bp 94.5~95.0 °C, n_D^{20} 1.2805 and d_4^{20} 1.8057. IR: 1343 (s,sh), 1325 (s), 1216~ 1278 (vs), 1176 (m), 1144 (s), 1108 (w), 1068 (w,sh), 1048 (ms), 1033 (ms,sh), 1005 (w), 985 (s), 950 (m), 901 (w), 873 (m), 812 (w), 783 (m), 741 (m), 725 (s), 635 (w), 663 (w), 615 (w), 601 (w), 568 (w), 523 (w). Mass: 381 [M-F]⁺(4.1), 331 C₇F₁₃⁺(2.1), 281 C₆F₁₁⁺(15.6), 243 C₆F₉⁺(2.4), 231 C₅F₉⁺(10.5), 219 C₄F₉⁺ (3.5), 193 C₅F₇⁺(4.2), 181 C₄F₇⁺(18.1), 169 C₃F₇⁺(15.2), 162 C₄F₆⁺(3.1), 150 C₃F₆⁺(2.4), 143 C₄F₅⁺(4.0), 131 C₃F₅⁺(31.8), 119 C₂F₅⁺(26.4), 100 C₂F₄⁺(14.9), 93 C₃F₃⁺(7.5), 69 CF₃⁺(100), 50 CF₂⁺(1.9), 31 CF⁺(6.6). Found: C, 24.03%. Calculated for C₈F₁₆: C, 24.00%.

 $\begin{array}{c} & \underbrace{\operatorname{Perfluoro}\left(1-\operatorname{oxaspiro}\left[4.5\right]\operatorname{decane}\right)\left(\underline{1}\underline{1}\underline{a}\right)}_{0}\left(\operatorname{nc}\right) \text{ had bp } 112.2 \sim \\ & 112.5 \quad \mathop{^{0}C}_{\circ} , \mathop{^{0}D}_{D}^{20}\underline{1.3005} \text{ and } \mathop{^{20}}_{4}^{20}\underline{1.8579}. \text{ IR: } 1372 \ (w), \ 1314 \sim 1323 \ (s), \\ & 1294 \ (s), \ 1196 \sim 1256 \ (vs), \ 1164 \ (w), \ 1131 \ (m), \ 1109 \ (ms), \ 1084 \\ & (ms), \ 1066 \ (m), \ 1049 \ (m), \ 1018 \ (m), \ 973 \ (s), \ 936 \ (w), \ 878 \ (w), \\ & 806 \ (m), \ 785 \ (w), \ 764 \ (w), \ 736 \ (w), \ 671 \ (w), \ 636 \ (w), \ 613 \ (w), \\ & 558 \ (w), \ 516 \ (w). \ Mass: \ 409 \ [M-F]^+ \ (4.8), \ 309 \ C_{7}F_{11} \ O^+ \ (3.4), \\ & 293 \ C_{7}F_{11} \ (12.8), \ 259 \ C_{6}F_{6} \ O^+ \ (12.4), \ 243 \ C_{6}F_{9} \ (10.1), \ 231 \ C_{5}F_{9} \ (4.8), \ 193 \ C_{5}F_{7} \ (9.6), \ 181 \ C_{4}F_{7} \ (17.5), \ 169 \ C_{3}F_{7} \ (18.8), \ 150 \ C_{3}F_{6} \ (136.5), \ 143 \ C_{4}F_{5} \ (8.0), \ 131 \ C_{3}F_{5} \ (60.4), \ 119 \ C_{2}F_{5} \ (15.5), \\ & 112 \ C_{3}F_{4} \ (5.3), \ 109 \ C_{3}F_{3} \ O^+ \ (8.0), \ 100 \ C_{2}F_{4} \ (77.5), \ 93 \ C_{3}F_{3} \ (15.6), \\ & 69 \ CF_{3} \ (100), \ 50 \ CF_{2} \ (5.0), \ 43 \ C_{2}F^+ \ (5.1), \ 31 \ CF^+ \ (10.1). \\ & Found: \ C, \ 25.15\%. \ Calculated \ for \ C_{9}F_{16} \ C, \ 25.23\%. \\ & \begin{array}{c} 19^{9} \ F \ nmr \ data \ of \ \underline{11a} \ and \ \underline{48} \ are \ shown \ in \ Table \ 1. \end{array}$

Fluorination of 5

Sample 5 (34.9 g, 0.224 mol) was fluorinated similarly under the following conditions; 3.5 A/dm², 5.5~9.0 V, 5~6 °C, 447 min (239 Ahr).

The product weighed 4.5 g for that collected at -196 °C, 25.4 g for that collected at -78 °C and 24.8 g for cell drainings respectively. Work-up of the products was the same as explained for the fluorination of <u>1</u>. Thus, the following compounds were obtained; products in the -78 °C trap, <u>39</u> (0.9), <u>25</u> (0.4), <u>26</u> (0.2), <u>17</u> (2.9), <u>18</u> (0.6), <u>8a</u> (0.3), <u>29</u> + <u>30</u> (0.6), <u>8b</u> (8.0), perfluoro(2-cyclopentylpropionyl fluoride) (<u>50</u>) (4.5), unidentified (7.0). Cell drainings, <u>17</u> (0.6), <u>8b</u> (7.9), <u>50</u> (5.1), unidentified (11.2). The yield of <u>8b</u> was 18.8%. The compounds in the -196 °C trap were mostly $\underline{22}$ and small amounts of $\underline{23}$ and $\underline{24}$ The sodium salts of acids (0.6 g) consisted of $\underline{36}$ (35 mol%), $\underline{37}$ (61), $\underline{38}$ (4) and $\underline{39}$ (1).

 $\begin{array}{l} \underbrace{\operatorname{Perfluoro}\left(4-\operatorname{methyl-2-oxabicyclo}[3.3.0]\operatorname{octane}\right)\left(\underline{8b}\right)}_{0}(nc) \text{ had}\\ bp 94.0 \sim 94.7 \ ^{\circ}C, \ n_{D}^{20}1.2937 \text{ and } d_{4}^{20}1.8122. \text{ IR: } 1354 \ (m,sh),\\ 1336 \ (ms), 1298 \ (s), 1257 \ (vs), 1239 \ (vs), 1223 \ (vs), 1206 \ (s),\\ 1188 \ (m), 1176 \ (m), 1160 \ (ms), 1119 \ (ms), 1063 \ (m), 1055 \ (s),\\ 1000 \ (m), 955 \ (s), 873 \ (w), 828 \ (ms), 810 \ (w,sh), 736 \ (m), 624 \\ (w), 543 \ (w), 518 \ (w). \ Mass: 359 \ [M-F]^+(13.8), 281 \ C_{6}F_{11}^+(15.2),\\ 243 \ C_{6}F_{9}^+(19.7), 231 \ C_{5}F_{9}^+(7.7), 228 \ C_{5}F_{8}0^+(17.2), 212 \ C_{5}F_{8}^+ \\ (9.5), 193 \ C_{5}F_{7}^+(16.6), 181 \ C_{4}F_{7}^+(32.6), 162 \ C_{4}F_{6}^+(9.3), 159 \\ C_{4}F_{5}0^+(11.0), 143 \ C_{4}F_{5}^+(12.9), 131 \ C_{3}F_{5}^+(80.2), 119 \ C_{2}F_{5}^+(12.1),\\ 100 \ C_{2}F_{4}^+(31.0), 93 \ C_{3}F_{3}^+(27.6), 69 \ CF_{3}^+(100), 47 \ COF^+(10.1),\\ 13 \ CF^+(14.5). \ 19F \ nmr: \phi(\alpha \ CF_{2}) \ 76.2(mult); \phi(CF_{3}) \ 74.7(mult);\\ \phi(CF-CF_{3}) \ 178.0(mult); \phi(CF) \ 188.0(mult). \ Found: C, 25.33\%. \\ Calculated \ for \ C_{8}F_{14}O: C, 25.40\%. \end{array}$

 $\begin{array}{c} & \underline{\operatorname{Perfluoro}(2-\operatorname{cyclopentylpropionyl fluoride)}(50)}_{D} (nc) \text{ had} \\ & bp \ 98.0 \sim 98.7 \ ^{\circ}\text{C}, \ n_D^{20}1.2960 \ \text{and} \ d_4^{20}1.7940. \ IR: \ 1888 \ \vee(c=o) \ (m), \\ & 1877 \ (m), \ 1370 \ (w), \ 1345 \ (w), \ 1314 \ (ms), \ 1283 \ (m,sh), \ 1250 \ (vs), \\ & 1188 \ (vs), \ 1150 \ (m), \ 1126 \ (w), \ 1046 \sim 1075 \ (w), \ 1013 \ (ms), \ 970 \\ & (m,sh), \ 955 \ (m), \ 863 \ (w), \ 815 \ (ms), \ 755 \ (w), \ 735 \ (w), \ 705 \ (w), \\ & 692 \ (w), \ 637 \ (w), \ 615 \ (w), \ 571 \ (w), \ 535 \ (w). \ Mass: \ 359 \ [M-F]^+ \\ & (3.1), \ 331 \ [M-COF]^+(7.5), \ 293 \ C_7F_{11}^{+}(3.3), \ 281 \ C_6F_{11}^{+}(4.2), \\ & 259 \ C_6F_9 o^+(7.8), \ 243 \ C_6F_9^{+}(11.1), \ 231 \ C_5F_9^{+}(16.8), \ 193 \ C_5F_7^+ \\ & (12.2), \ 181 \ C_3F_8^{+}(36.6), \ 162 \ C_4F_6^{+}(9.0), \ 147 \ C_3F_5 o^+(11.8), \ 131 \\ & C_3F_5^{+}(90.4), \ 119 \ C_2F_5^{+}(17.0), \ 100 \ C_2F_4^{+}(32.2), \ 93 \ C_3F_3^{+}(25.3), \\ & 69 \ CF_3^{+}(100), \ 47 \ COF^{+}(27.9), \ 43 \ C_2F^{+}(50.5), \ 31 \ CF^{+}(15.2). \\ & Found: \ C, \ 25.45\%. \ Calculated \ for \ C_8F_140: \ C, \ 25.40\%. \\ & 1^9F \ nmr \ data \ of \ 50 \ are \ shown \ in \ Table \ 1. \end{array}$

Fluorination of 6

Sample <u>6</u> (34.0 g, 0.200 mol) was fluorinated similarly under the following conditions; 3.5 A/dm², 5.3~8.5 V, 5~6 °C, 483 min (238 Ahr).

The products weighed 4.5 g for those collected at -196 °C and 10.9 g for those at -78 °C and 38.1 g for cell drainings respectively. Work-up of the products was the same as explained for the fluorination of $\underline{2}$. Thus, the following compounds

were obtained; distillation of the product obtained in the -78 °C trap, Fraction 1, bp room temp~90.0 °C, 0.8 g, <u>37</u> (trace) <u>38</u> (trace), <u>39</u> (trace), <u>25</u> (0.3), <u>8a</u> (trace), unidentified (0.4). Fraction 2, bp 90.5~119.5 °C, 3.1 g, <u>8a</u> (0.2), <u>29</u> + <u>30</u> (0.2), <u>48</u> (1.2), <u>49</u> (0.2), <u>8c</u> (0.2), unidentified (1.1), Residue, 5.8 g, <u>48</u> (0.3), <u>8c</u> (1.8), perfluoro(2-cyclopentylbytyryl fluoride)(<u>51</u>) + <u>14</u> (1.8), unidentified (1.9). Cell drainings, 38.1 g, <u>48</u> (1.7), <u>8c</u> (10.6), <u>51</u> + <u>14</u> (9.3), unidentified (16.5). The compounds in the -196 °C trap were mostly <u>22</u> and small amounts of <u>23</u> and <u>24</u>. The sodium salts of acids (1.0 g) consisted of <u>36</u> (63 mol%), <u>37</u> (13) and <u>38</u> (24).

On the basis of the relative areas of the absorption peaks due to -CF group (ϕ 175.9 for <u>51</u> and ϕ 179.2 for <u>14</u>, respectively) in the ¹⁹F nmr spectrum of the combined sample mixture of <u>51</u> and <u>14</u> from Residue and Cell drainings, the following composition was determined: <u>51/14</u> = 62 : 38. Its mixture could not be resolved by GLC at all. Hence it was treated with anhydrous AlCl₃ at such a reaction condition as only the acid fluoride would change into the corresponding acid chloride (<u>52</u>), which was easily separated from the former.

The reaction of a mixture of 14 and 51 with anhydrous AlCl,

In a 30 ml Hoke bomb, 3.4 g of a mixture of <u>14</u> and <u>51</u>, and 1.0 g of anhydrous AlCl₃ were held at 100 °C for 23 hr. The products were separated by trap-to-trap distillation. The compounds (3.25 g) retained at -78 °C consisted of <u>14</u> and pentadecafluoro-2-cyclopentylpropionyl chloride (<u>52</u>) in a ratio of <u>14/52</u> = 38 : 62 (Col. B).

 $\begin{array}{c} & \underline{\operatorname{Perfluoro}\left(4-\operatorname{ethyl-2-oxabicyclo}\left[3.3.0\right]\operatorname{octane}\right)\left(\underline{8c}\right)}\left(\operatorname{nc}\right) \ \mathrm{had} \\ & \mathrm{bp} \ 115.5 \sim 115.8 \ ^\circ \mathrm{C}, \ \operatorname{n_D}^{20} 1.2991 \ \mathrm{and} \ \operatorname{d_4}^{20} 1.8497. \ \mathrm{IR:} \ 1355 \ (\mathrm{ms}), \\ & 1328 \ (\mathrm{w}), \ 1303 \ (\mathrm{s}), \ 1278 \ (\mathrm{s}, \mathrm{sh}), \ 1226 \sim 1251 \ (\mathrm{vs}), \ 1209 \ (\mathrm{s}), \\ & 1188 \ (\mathrm{m}, \mathrm{sh}), \ 1173 \ (\mathrm{m}, \mathrm{sh}), \ 1156 \ (\mathrm{s}), \ 1136 \ (\mathrm{m}), \ 1126 \ (\mathrm{w}, \mathrm{sh}), \ 1105 \\ & (\mathrm{w}), \ 1088 \ (\mathrm{w}), \ 1064 \ (\mathrm{w}), \ 1036 \ (\mathrm{m}), \ 1001 \ (\mathrm{m}), \ 983 \ (\mathrm{w}), \ 973 \ (\mathrm{w}, \mathrm{sh}), \\ & 938 \ (\mathrm{m}), \ 900 \ (\mathrm{m}), \ 870 \ (\mathrm{w}), \ 818 \ (\mathrm{m}), \ 803 \ (\mathrm{m}), \ 743 \ (\mathrm{ms}), \ 625 \ (\mathrm{w}), \\ & 525 \ (\mathrm{w}). \ \ \mathrm{Mass:} \ 409 \ [\mathrm{M-F]}^+ (15.5), \ 343 \ \mathrm{C_8F_{13}}^+ (7.0), \ 331 \ \mathrm{C_7F_{13}}^+ \\ & (18.3), \ 293 \ \mathrm{C_7F_{11}}^+ (7.3), \ 278 \ \mathrm{C_6F_{10}O^+ (18.3)}, \ 262 \ \mathrm{C_6F_{10}}^+ (7.5), \\ & 243 \ \mathrm{C_6F_9}^+ (22.5), \ 231 \ \mathrm{C_5F_9}^+ (18.3), \ 193 \ \mathrm{C_5F_7}^+ (16.2), \ 181 \ \mathrm{C_4F_7}^+ \\ & (32.6), \ 159 \ \mathrm{C_4F_5O^+ (15.5)}, \ 143 \ \mathrm{C_4F_5}^+ (12.4), \ 131 \ \mathrm{C_3F_5}^+ (84.4), \ 119 \end{array}$

 $\begin{array}{c} {\rm C_2F_5}^+(32.3)\,,\,100\,\,{\rm C_2F_4}^+(37.6)\,,\,93\,\,{\rm C_3F_3}^+(22.9)\,,\,69\,\,{\rm CF_3}^+(100)\,,\,47\\ {\rm COF}^+(12.0)\,,\,31\,\,{\rm CF}^+(9.7)\,,\,\,^{19}{\rm F}\,\,{\rm nmr}\colon\,\phi\,(\alpha\,\,{\rm CF_2})\,\,74.5\,({\rm mult})\,;\,\,\phi\,({\rm CF_3})\\ 81.4\,({\rm mult})\,;\,\,\phi\,(-{\rm CF-C_2F_5})\,\,178.0\,({\rm mult})\,;\,\,\phi\,({\rm CF})\,\,188.0\,({\rm mult})\,.\\ {\rm Found}\colon\,{\rm C}\,,\,25.18\,\&\,.\,{\rm Calculated}\,\,{\rm for}\,\,{\rm C_9F_{16}O}\colon\,{\rm C}\,,\,25.23\,\&\,. \end{array}$

 $\begin{array}{c} \underbrace{\operatorname{Perfluoro}(3-\operatorname{cyclopentyloxolane})(\underline{14})}_{2}(\operatorname{nc}) \text{ had bp } 121.5 \\ \end{array}$ 122.0 °C, $\operatorname{n_D}^{20}$ 1.3032 and $\operatorname{d_4}^{20}$ 1.8671. IR: 1373 (m,sh), 1343 (m,sh), 1293 (s,sh), 1227~1261 (vs), 1198 (s,sh), 1178 (s,sh), 1135 (ms), 1081 (ms), 1035 (ms), 1011 (w), 976 (m), 936 (m), 853 (w), 818 (w), 807 (w), 790 (w), 766 (ms), 748 (w), 730 (w), 695 (w), 673 (w), 618 (w), 575 (w), 543 (w), 515 (w). Mass: 409 [M-F]⁺(4.5), 381 C₈F₁₅⁺(5.2), 343 C₈F₁₃⁺(4.0), 331 C₇F₁₃⁺(3.8), 312 C₇F₁₂⁺ (9.3), 293 C₇F₁₁⁺(9.5), 262 C₆F₁₀⁺(5.8), 243 C₅F₁₀⁺(100), 231 C₅F₉⁺(11.8), 212 C₅F₈⁺(5.8), 193 C₅F₇⁺(58.3), 181 C₄F₇⁺(14.0), 162 C₄F₆⁺(10.0), 150 C₃F₆⁺(8.7), 143 C₄F₅⁺(16.8), 131 C₃F₅⁺(71.8), 119 C₂F₅⁺(17.0), 100 C₂F₄⁺(28.9), 93 C₃F₃⁺(24.4), 69 CF₃⁺(80.6), 47 coF⁺(6.5), 31 CF⁺(10.2). Found: C, 25.11%. Calculated for C₉F₁₆O: C, 25.23%.

 $\begin{array}{c} \underline{Pentadecafluoro-2-cyclopentylpropionyl\ chloride\ (52)\ (nc)} \\ had\ bp\ 138.0 \sim 138.5\ ^{\circ}C,\ n_{D}^{20}1.3263\ and\ d_{4}^{20}1.8371. \ IR\ (capillary\ film):\ 1785\ v(c=o)\ (s)\ ,\ 1372\ (w)\ ,\ 1340\ (s)\ ,\ 1311\ (s)\ ,\ 1197\ \sim \\ 1257\ (vs\ s)\ ,\ 1150\ (ms)\ ,\ 1102\ (ms)\ ,\ 1085\ (m)\ ,\ 1045\ (ms\ ,sh)\ ,\\ 1026\ (s)\ ,\ 980\ (ms)\ ,\ 947\ (w)\ ,\ 882\ (s)\ ,\ 867\ (w)\ ,\ 843\ (w)\ ,\ 798\ (m)\ ,\\ 784\ (w)\ ,\ 752\ (s)\ ,\ 729\ (s)\ ,\ 672\ (w)\ ,\ 654\ (w)\ ,\ 618\ (w)\ ,\ 597\ (w)\ ,\\ 553\ (m)\ ,\ 542\ (w)\ ,\ 523\ (w)\ .\ Mass:\ 425\ [M-F]^+(2.9)\ ,\ 409\ [M-C1]^+ \\ (11.4)\ ,\ 381\ c_{8}F_{15}^{\ +}(7.7)\ ,\ 281\ c_{6}F_{11}^{\ +}(4.7)\ ,\ 243\ c_{6}F_{9}^{\ +}(8.4)\ ,\ 231\ c_{5}F_{9}^{\ +}(9.3)\ ,\ 193\ c_{5}F_{7}^{\ +}(8.7)\ ,\ 181\ c_{4}F_{7}^{\ +}(13.2)\ ,\ 143\ c_{4}F_{5}^{\ +}(8.0)\ ,\\ 131\ c_{3}F_{5}^{\ +}(2.4)\ ,\ 119\ c_{2}F_{5}^{\ +}(24.1)\ ,\ 100\ c_{2}F_{4}^{\ +}(11.5)\ ,\ 93\ c_{3}F_{3}^{\ +}(13.2)\ ,\\ 69\ cF_{3}^{\ +}(53.9)\ ,\ 63\ cocl^{35+}(100)\ ,\ 31\ cF^{\ +}(6.6)\ .\ Found:\ c\ ,\ 24.29\%. \\ Calculated\ for\ c_{9}F_{15}^{\ OCl:\ c\ ,\ 24.30\%. \end{array}$

¹⁹ F nmr data of <u>14</u> and <u>52</u> are shown in Table 1.

Fluorination of 7

Sample 7 (33.9 g, 0.184 mol) was fluorinated similarly under the following conditions; 3.5 A/dm², 5.7~8.1 V, 5~6 °C, 426 min (228 Ahr).

The products weighed 2.9 g for those collected at -196 °C, 5.1 g for those collected at -78 °C and 49.3 g for cell drainings respectively. Work-up of the products was the same as explained for the fluorination of <u>1</u>. Thus, the following compounds were obtained; products obtained in the -78 °C trap, 5.1 g, <u>37</u> (0.4), <u>38</u> (0.1), <u>25</u> (0.6), <u>26</u> (0.9), <u>17</u> (0.2), <u>18</u> (0.2), <u>11b</u> (0.6), unidentified (2.1). Cell drainings, 49.3 g, perfluoro(n-butylcyclopentane) (<u>53</u>) (1.6), perfluoro(n-propylcyclohexane) (<u>54</u>) (0.9), <u>11b</u> (11.3), perfluoro(2-cyclohexylmethylpropionyl fluoride) (<u>55</u>) (11.2), unidentified (24.3). The yield of <u>11b</u> was 13.4%. The compounds in the -196 °C trap were mostly <u>22</u> and small amounts of <u>23</u> and <u>24</u>. The sodium salts of acids (0.4 g) consisted of <u>36</u> (41 mol%), <u>37</u> (48), <u>38</u> (8) and <u>39</u> (3).

 $\begin{array}{c} & \operatorname{Perfluoro}\left(n-\operatorname{butylcyclopentane}\right)\left(53\right)(nc) \text{ had bp } 97.0 \sim 99.5 \ ^{\circ}C\\ \text{and } n_{D}^{20}1.2937. \quad \mathrm{IR: } 1348 \ (m), \ 1325 \ (m), \ 1319 \ (m,sh), \ 1288 \ (s), \\ 1272 \ (s,sh), \ 1257 \ (vs), \ 1245 \ (vs), \ 1220 \ (vs), \ 1195 \ (s), \ 1158 \ (m), \\ 1143 \ (m), \ 1124 \ (m), \ 1097 \ (w), \ 1084 \ (w,sh), \ 1057 \ (w), \ 1029 \ (vs), \\ 1012 \ (w,sh), \ 977 \ (m), \ 957 \ (w,sh), \ 931 \ (w), \ 852 \ (w), \ 817 \ (w), \ 798 \\ (w), \ 778 \ (w), \ 743 \ (w), \ 723 \ (s), \ 637 \ (m), \ 618 \ (w), \ 595 \ (w), \ 532 \\ (w), \ 528 \ (w), \ 499 \ (w), \ 464 \ (w). \ Mass: \ 431 \ [M-F]^+(4.2), \ 381 \\ C_8F_{15}^{+}(5.8), \ 331 \ C_7F_{13}^{+}(6.6), \ 281 \ C_6F_{11}^{+}(6.0), \ 262 \ C_6F_{10}^{+}(4.8), \\ 243 \ C_6F_9^{+}(5.2), \ 231 \ C_5F_9^{+}(7.2), \ 181 \ C_4F_7^{+}(13.0), \ 169 \ C_3F_7^{+}(23.1), \\ 131 \ C_3F_5^{+}(27.3), \ 119 \ C_2F_5^{+}(22.7), \ 100 \ C_2F_4^{+}(13.0), \ 69 \ CF_3^{+}(100), \\ 19^{F} \ nmr: \ \phi(CF_3) \ 80.8(t) \ [J(CF_3-CF_2)=13.5 \ Hz]; \ \phi(CF) \ 186.1(mult). \\ Found: \ C, \ 23.90\%. \ Calculated \ for \ C_9F_{18}: \ C, \ 24.00\%. \end{array}$

 $\begin{array}{c} \underline{\operatorname{Perfluoro}(1-\operatorname{cyclohexylpropane})\ (54)}_{0}\ (nc)\ had\ bp\ 106.0\ \sim 106.8\\ {}^{\circ}\mathrm{C}\ n_{D}^{20}1.3096\ abd\ d_{4}^{20}1.8216\ IR:\ 1348\ (m)\ ,\ 1319\ (s)\ ,\ 1309\ (m,sh)\ ,\\ 1250\ (vs)\ ,\ 1228\ (s,sh)\ ,\ 1211\ (vs)\ ,\ 1201\ (s,sh)\ ,\ 1171\ (m)\ ,\ 1158\ (m,sh)\ ,\ 1141\ (m)\ ,\ 1112\ (w)\ ,\ 1066\ (m)\ ,\ 1045\ (w)\ ,\ 1025\ (s)\ ,\ 1016\ (m,sh)\ ,\ 988\ (m)\ ,\ 955\ (w,sh)\ ,\ 947\ (m)\ ,\ 938\ (m)\ ,\ 868\ (w,sh)\ ,\ 853\ (w)\ ,\ 842\ (w)\ ,\ 817\ (w)\ ,\ 784\ (w)\ ,\ 745\ (w)\ ,\ 715\ (m)\ ,\ 705\ (w)\ ,\ 665\ (w)\ ,\ 618\ (w)\ ,\ 586\ (w)\ ,\ 530\ (w)\ .\ Mass:\ 381\ C_8F_{15}^{\phantom +}(4.2)\ ,\ 281\ C_6F_{10}^{\phantom +}(37.6)\ ,\ 243\ C_6F_{9}^{\phantom +}(6.4)\ ,\ 231\ C_5F_{9}^{\phantom +}(24.0)\ ,\ 193\ C_5F_{7}^{\phantom +}(8.9)\ ,\ 181\ C_4F_{7}^{\phantom +}(40.3)\ ,\ 169\ C_3F_{7}^{\phantom +}(9.9)\ ,\ 162\ C_4F_{6}^{\phantom +}(8.2)\ ,\ 143\ C_4F_{5}^{\phantom +}(7.8)\ ,\ 131\ C_3F_{5}^{\phantom +}(79.8)\ ,\ 119\ C_2F_{5}^{\phantom +}(27.6)\ ,\ 100\ C_2F_{4}^{\phantom +}(29.9)\ ,\ 93\ C_3F_{3}^{\phantom +}(14.6)\ ,\ 69\ \mathrm{cF}_{3}^{\phantom +}(100)\ ,\ 31\ \mathrm{CF}^{\phantom +}(13.4)\ .\ \ \mathrm{Found}:\ C\ ,\ 23.78\ .\ \mathrm{Calculated}\ \ for\ C_9F_{18}^{\phantom +}(24.00\)^{\circ}$

 $\begin{array}{c} \underline{Perfluoro\left(3-methyl-1-oxaspiro\left[4.5\right]decane\right)\left(11b\right)} (nc) \ had\\ bp\ 127.2\ \sim\ 127.5\ ^{\circ}C,\ n_{D}^{20}1.3012 \ and\ d_{4}^{20}1.8655. \ IR:\ 1323\ (vs),\\ 1295\ (vs),\ 1259\ (vs),\ 1246\ (s,sh),\ 1228\ (ms,sh),\ 1201\ (s),\ 1173\\ (w),\ 1125\ (w),\ 1085\ (w),\ 1058\ (w),\ 1028\ (s),\ 996\ (m),\ 974\ (s),\\ \end{array}$

950 (w), 791 (m), 763 (w), 731 (ms), 638 (w), 615 (w), 573~588 (w), 508 (w). Mass: 459 $[M-F]^+(88.0)$, 309 $C_7F_{11}O^+(15.5)$, 293 $C_7F_{11}^+(8.0)$, 281 $C_6F_{11}^+(6.2)$, 243 $C_6F_9^+(10.1)$, 219 $C_4F_9^+(10.9)$, 200 $C_4F_8^+(16.9)$, 181 $C_4F_7^+(26.1)$, 169 $C_3F_7^+(9.8)$, 150 $C_3F_6^+(17.0)$, 131 $C_3F_5^+(100)$, 119 $C_2F_5^-(10.0)$, 93 $C_3F_3^+(13.0)$, 69 $CF_3^-(94.2)$, 31 $CF^+(6.0)$. ¹⁹ F nmr: $\phi(\alpha CF_2)$ 75.5 and 82.1 (J_{AB} =138 Hz]; $\phi(CF_3)$ 73.5(mult); $\phi(CF)$ 181.9(mult). Found: C, 25.13%. Calculated for $C_{10}F_{18}O^{\circ}$ C, 25.11%.

 $\begin{array}{c} \begin{array}{c} \mbox{Perfluoro}(2-cyclohexylmethylpropionyl fluoride)} (55) (nc) \\ \mbox{had bp } 135.5 \sim 135.7 \ ^{\circ}\text{C}, \ n_D^{20}1.3052 \ \text{and} \ d_4^{20}1.8796. \ \text{IR: } 1891 \ \text{and} \\ \mbox{ls74} \ \nu(\text{c=o}) (m), \ 1316 \ (ms), \ 1293 \ (s), \ 1238 \sim 1256 \ (s \sim \nu s), \ 1199 \\ (s), \ 1176 \ (m), \ 1146 \ (m), \ 1111 \ (m), \ 1029 \ (ms), \ 1006 \ (w), \ 986 \ (w), \\ \mbox{975} \ (ms), \ 931 \ (w), \ 786 \ (w), \ 748 \ (w), \ 736 \ (m), \ 636 \ (w). \ \text{Mass:} \\ \mbox{459} \ [\text{M-F]}^+(3.8), \ 431 \ \text{CgF}_{17}^+(2.3), \ 331 \ \text{CgF}_{13}^+(2.6), \ 293 \ \text{CgF}_{11}^+ \\ (3.4), \ 281 \ \text{CgF}_{11}^+(5.6), \ 243 \ \text{CgF}_{9}^+(5.6), \ 231 \ \text{CgF}_{9}^+(4.8), \ 197 \\ \mbox{C}_{4}F_{8}0^+(5.7), \ 181 \ \text{C}_{4}F_{7}^+(13.9), \ 169 \ \text{C}_{3}F_{7}^+(11.3), \ 150 \ \text{C}_{3}F_{6}^+(8.4), \\ \ 131 \ \text{C}_{3}F_{5}^+(36.8), \ 119 \ \text{C}_{2}F_{5}^+(8.8), \ 100 \ \text{C}_{2}F_{4}^+(12.0), \ 69 \ \text{CF}_{3}^+(100), \\ \ 47 \ \text{coF}^+(8.8), \ 31 \ \text{CF}^+(4.3). \ \ 19F \ nmr: \ \phi(\text{CC}) \ 180.5 \ (mult); \\ \phi(\text{CF}_{3}) \ 72.1 \ (mult); \ \phi(\text{CF-CF}_{3}) \ 181.5 \ (mult); \ \phi(\text{CF}) \ 180.5 \ (mult). \\ \mbox{Found: } C, \ 24.98\%. \ Calculated \ for \ C_{10}F_{18}0: \ C, \ 25.11\%. \ \ 19F \ nmr \ data \ of \ 54 \ are \ shown \ in \ Table \ 1. \end{array}$

ACKNOWLEDGEMENT

The authors wish to thank Mr. Kazuo Kodaira for recording mass spectra.

REFERENCES

- For example, T. Abe, K. Kodaira, H. Baba and S. Nagase,
 J. Fluorine Chem., <u>12</u> (1978) 1 and references therein.
- 2 R. L. Talbott, J. Org. Chem., <u>32</u> (1967) 834.
- J. Bailey, R. G. Plevey and J. C. Tatlow, Tetrahedron Letters, (1975) 869.
- T. Abe, E. Hayashi, H. Baba, K. Kodaira and S. Nagase,
 J. Fluorine Chem., <u>15</u> (1980) 353.
- 5 T. Abe, E. Hayashi, H. Baba and S. Nagase, Chem. Letters, (1980) 121.